Massively parallel simulations of Laser-Plasma **Acceleration for e-/e+ Collider Concepts**

presented by David L. Bruhwiler¹

COMPASS team & close collaborators:

J.R. Cary, 1,2 E. Cormier-Michel, B. Cowan, V. Decyk, E. Esarey, C.G.R. Geddes,

C. Huang, W.P. Leemans, W. Mori, K. Paul, C.B. Schroeder, F. Tsung J.-L. Vay

VORPAL optimization and scaling:

K. Amyx, T. Austin, G.I. Bell, P. Messmer, P. Mullowney & B. Norris **VACET** collaborators:

W. Bethel, J. Jacobsen, Prabhat, O. Rubel, D. Ushizima & G. Weber

ComPASS SciDAC Review; Rockville MD; April 21, 2009

- Tech-X Corporation
- 2. University of Colorado
- 3. Lawrence Berkeley Lab
- Argonne National Lab

Primary support: DOE Office of Science, Office of High Energy Physics, SciDAC-2

Additional support: DOE SBIR program (HEP, ASCR); NNSA / NA-22; DARPA

DOD SBIR program (AFOSR, OSD); Tech-X Corp. customers

BELLA* Project Underway: World-Leading Facility for Laser-Based Accelerator Science

- High rep rate (1 Hz), Petawatt class laser (>40 J in < 40 fs)</p>
- 10 GeV beam in 1 meter

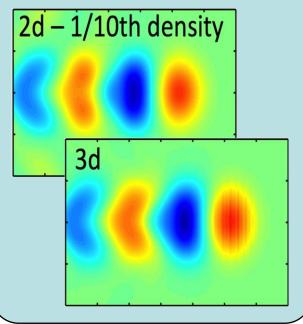
Regimes for a 300J laser

8	
	UCLA

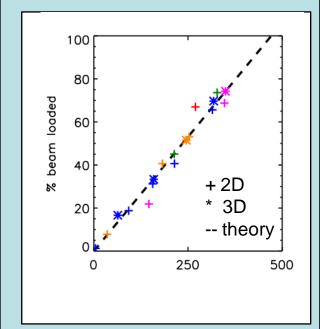
Self-guiding		External-guiding		
Laser	Self Injection I*	Self Injection II**	Self Injection**	External Injection**
a0	43	5.8	3.5	2
Spot [µm]	9	50	70	101
Duration [fs]	30	110	155	224
Plasma				
Density [cm ⁻³]	1.5×10 ¹⁹	2.7×10 ¹⁷	8.2×10 ¹⁶	2.2×10 ¹⁶
Length [cm]	0.25	22	100	500
e- Bunch			Ma	ximum electron energy
Energy [GeV]	4	13	25	53
Charge [nC]	14	2	1.8	1.5
	Strongly nonlinear	Nonlinear Full PIC Boosted & QuickPIC Lab.		Weakly Nonlinear Full PIC Boosted
	Full PIC Laboratory	& QUICKFIC Lab.		& QuickPIC Lab.

^{*} Gordienko and A.Pukhov, Phys Plasmas B, 043109 (2005).

^{**} W. Lu et al., Phys. Rev. ST Accel. Beams 10, 061301 (2007).

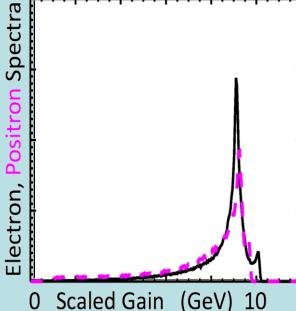


Scaling with density used to simulate m-scale 10 GeV stages for BELLA



- Order(GHours) for direct sim.
- Scaling allows shorter runs:
 - Constant: L_{laser}/λ_p , w_0/λ_p , a_0
 - Vary density: energy~1/n_e

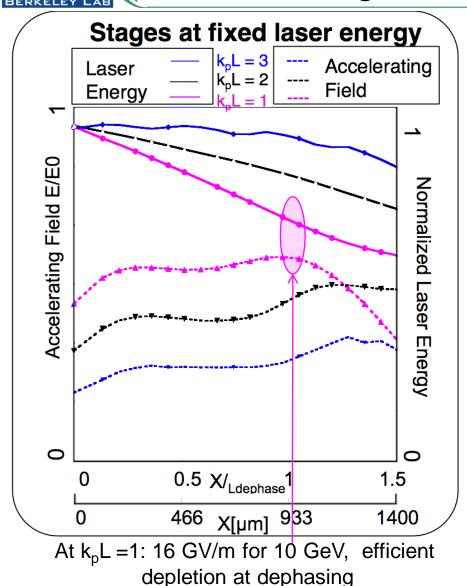
Wake scales with density Scaled simulations at a=1



 Beam loading scaling allows prediction of stage charge

density & k _p L:	$k_p \sigma_r = 0.5$	1	1.8
$k_pL = 2$, $a_0 = 1$ $n_0 = 10^{18}$ cm ⁻³			+
$k_pL = 2$, $a_0 = 1$ $n_0 = 10^{19} \text{ cm}^{-3}$	+*	+*	+*
$k_pL = 1$, $a_0 = 1.4$ $n_0 = 10^{19}$ cm ⁻³	+		

- Particle bunch shaping and plasma taper increase gain, reduce energy spread
- Quasi linear regime allows symmetric acceleration of positron buch

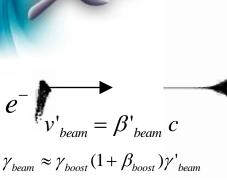

9 GeV energy gain
4% energy spread (FWHM)
0.7 m acceleration length

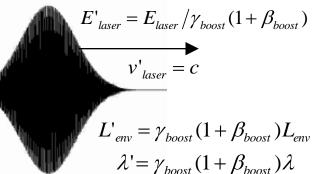
E. Cormier-Michel et al. 13th AAC workshop proc. (2008)

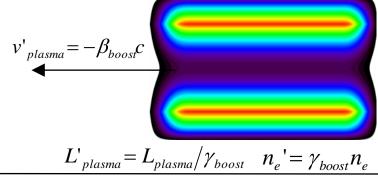
Simulations tune laser and bunch: Efficient stage near $k_D L = 1$

 $k_pL=2, 225pC, k_pL=1, 315pC$

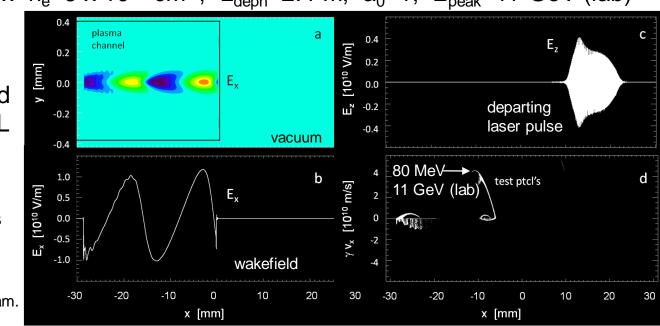
~9 GeV gain


 $4\% \Delta E/E$ 0.7 m length


Further increase efficiency – use shaped bunches and laser pulses

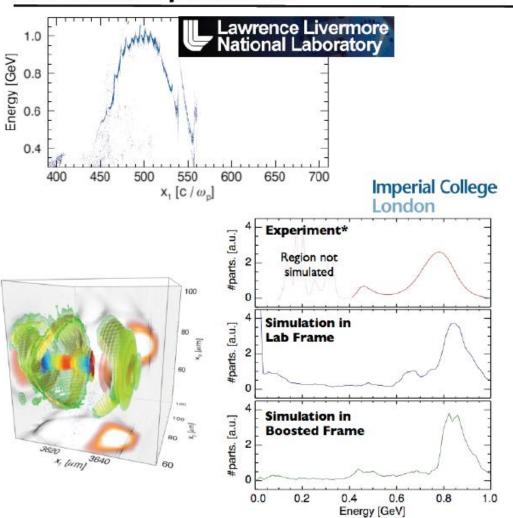


Boosted-frame concept; 1D proof-of-principle in VORPAL

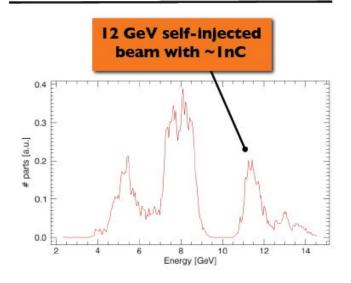


- Could enable new simulation regimes; dramatically speed up existing simulations
- Grid size & resolution are equivalent to standard lab frame runs
- 2D example shown below: $n_e=6 \times 10^{16} \text{ cm}^{-3}$; $L_{deph}\sim 2.4 \text{ m}$; $a_0=1$; $E_{peak}\sim 11 \text{ GeV (lab)}$
- agrees with scaling estimate
- Speed-up of 2,000x
- Total-field / scattered-field emitter added to VORPAL
- More work required
 - improved noise reduction
 - automated set-up, diagnostics
 - validation and testing

D. Bruhwiler *et al.*, Proc AAC 2008 Primary support, DOE/HEP SBIR program.

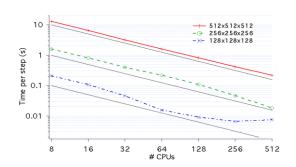


Ultra-fast 3D simulations in the Boosted Frame : 20 to 500x speedups

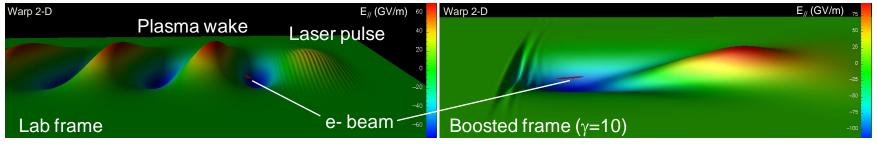


Supporting experimentalist with current experiments...

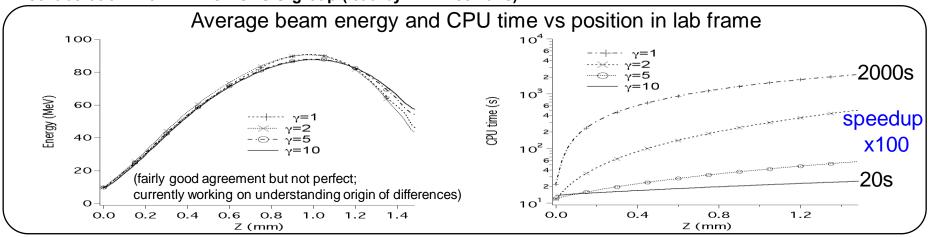
...and designing the next generation of LWFA stages



2D boosted-frame LWFA simulations now working successfully in WARP



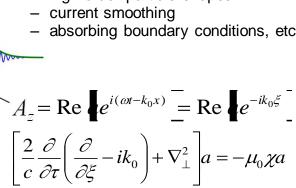
- New electromagnetic solver implemented in Warp (SBIR funding)
 - scaling test (3-D decomp)

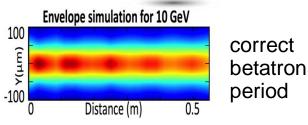


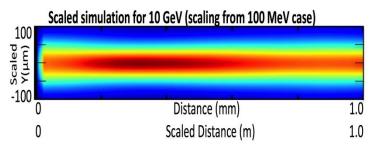
# procs decomposition	# cell, particles	Efficiency
256 (8×8×4)	1,024 ² ×512 100M	1.
512 (8×8×8)	1,024 ³ 200M	1.04
1024 (8×8×16)	1,024 ² ×2,048 400M	1.12

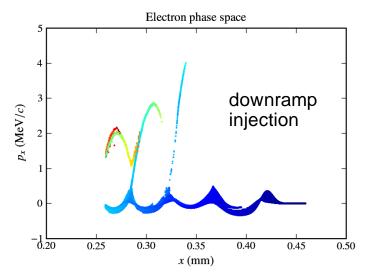
Applied to modeling of one stage of LWFA (2-D for now, 3-D to follow)

collaboration with LBNL's LOASIS group (lead by Wim Leemans)


Envelope model simulates 10 GeV at scale; 3D downramp injection of plasma electrons

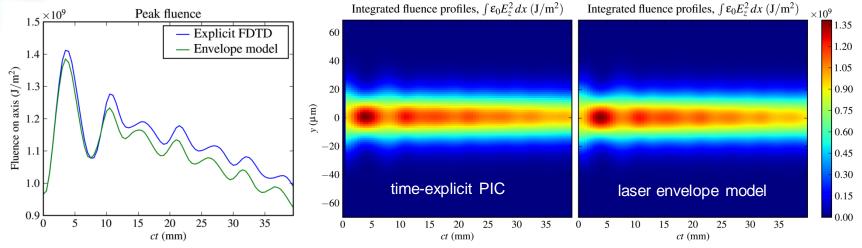


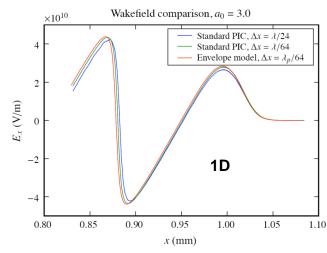


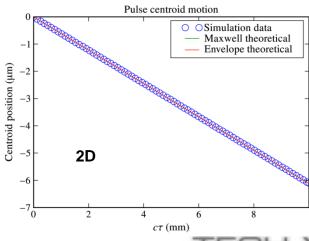


- Particles respond to ponderomotive force
- Full plasma dynamics via standard PIC
 - high-order particle shapes
 - absorbing boundary conditions, etc.

Challenges for envelope simulations of Bella stages


- spectral broadening due to pump depletion limits distance
- small, low-emittance injected bunch requires fine mesh
- Speed-up factor $\approx .1*(\lambda_p/\lambda_0)^2 \sim 1/n_e$ (typically 10x to 100x)
 - transverse resolution same as for standard PIC
 - Trilinos for implicit solve; 512 Franklin cores is typical
- Ideal algorithm for simulating downramp injection
 - laser spot at back of gas jet → propagation of converging pulse over $>Z_R \rightarrow$ wide transverse simulation domain
 - full PIC simulations effectively limited to 2D
 - 2D envelope simulations agree with full PIC → 3D next


VORPAL laser-envelope model successfully benchmarked with time-explicit PIC

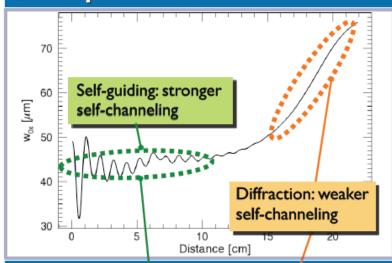


- Good agreement; extended channel propagation, betatron oscillations; pump depletion
- 2D, scaled 10 GeV parameters; $n_0 = 10^{24} \text{ m}^{-3}$; $a_0 = 1$; speed-up of 18x

Converged plasma wakefield

- $-\lambda_p/32$ for envelope model
- $-\lambda_0/64$ for time-explicit PIC
- Correct group velocity
 - no Yee dispersion errors

B. Cowan et al., Proc AAC 2008

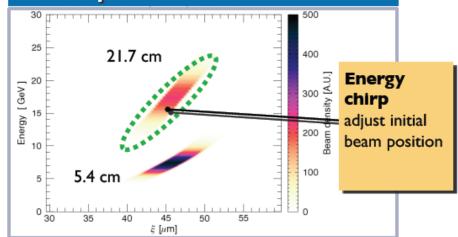

TECH-X CORPORATION

QuickPIC: +10 GeV in self-guided regime

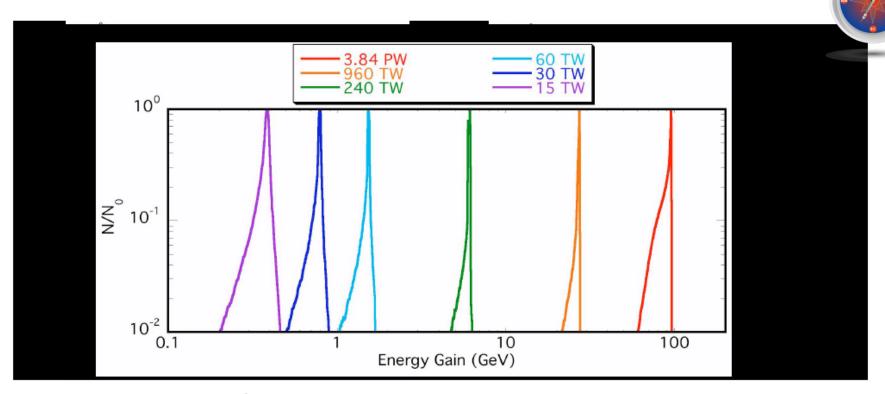
Laser spot evolution

Spectral evolution

Main results


Two regimes for laser propagation:

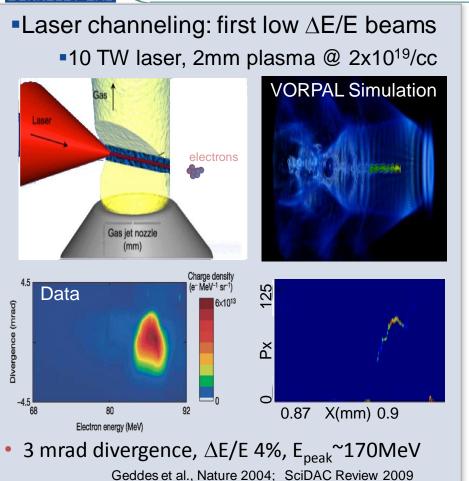
- Self-guiding propagation regime until 10 cm
- Depletion leads to diffraction after 10 cm

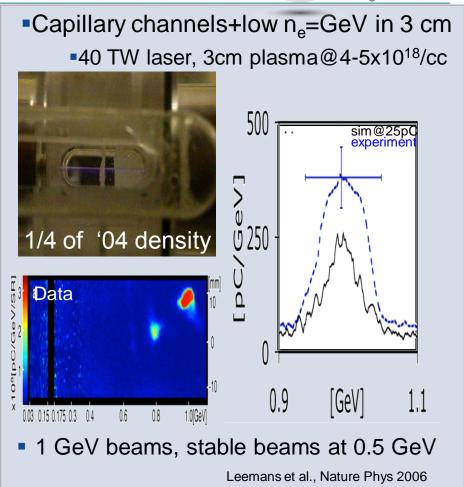

Accelerating gradient in good agreement with theory

- QuickPIC: 0.8 GeV/cm
- Theoretical: 0.6 GeV/cm

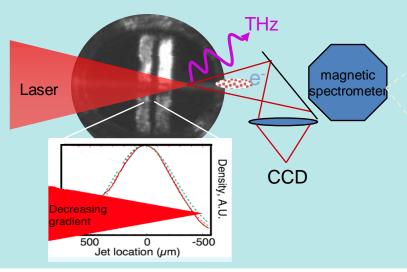
Phase-space evolution

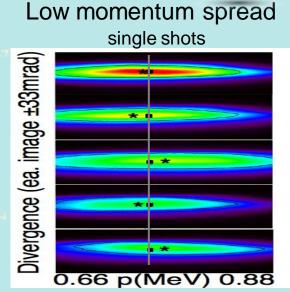
QuickPIC:weakly nonlinear regime scales well out to 100 GeV



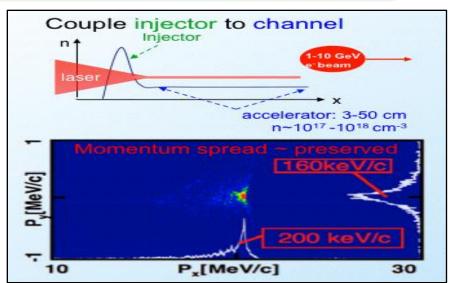

- N₀ increases with output energy.
- The emittance remains relatively constant throughout all of the simulations.
- To reduce the energy spread an exact theory is required for beam loading and for the evolution of the laser after hundreds of Z_R .

Self trapped experiments: Physics of percent energy spread, verify scaling

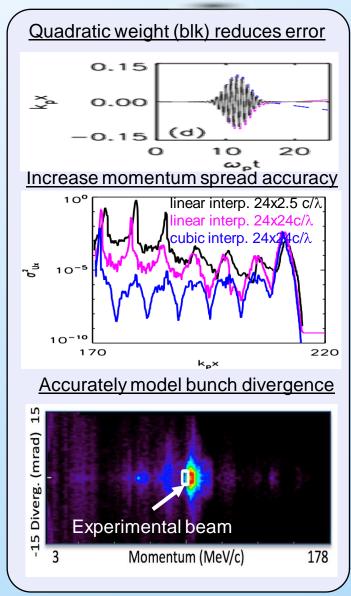

- Simulations show physics of self trapping, production of narrow ΔE :
 - beam loading and dephasing MHour simulations in 3D
- Bunch energy scales as expected with laser, plasma
- 100 MeV 3D production runs at 11k processor/36 hr, 2D 256 processor/1 hr
 - meets near-term goal of providing experimental feedback on a scale of hours



Plasma downramp trapping: all-optical low- ΔE , low- ϵ injector

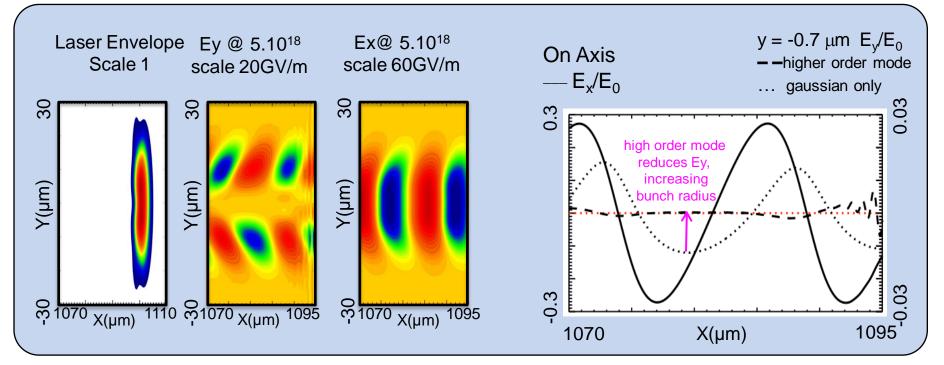


- Validate: VORPAL simulations vs. diagnostics
 - MeV momentum, ∆p ~ 200 keV/c
 - 20-50 keV/c transverse momentum
 - 70% laser transmission
 - Ultrashort bunch THz diagnostics
- Physics: ramp controlled trapping threshold
- Ramp → channel: low ∆E at high E
- Experiments in progress : downramp and also colliding pulse to optimize injector



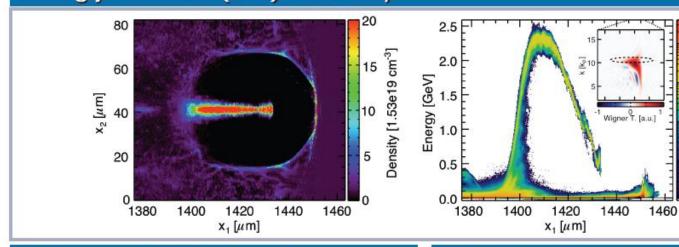
Improving PIC momentum spread accuracy: more accurate modeling of bunch emittance

- Discretization introduces interpolation, error
 - Unphysical temperature, emittance
 - Slow improvement with resolution
- Momentum errors reduced 100x by:
 - High order spline interpolation
 - Current smoothing
 - Simulated temperature close to expt.
 - Reduces unphysical trapping
- Divergence close to 100 MeV experiment
 - Improves design of low-emittance stages
 - Further work required for collider emittances

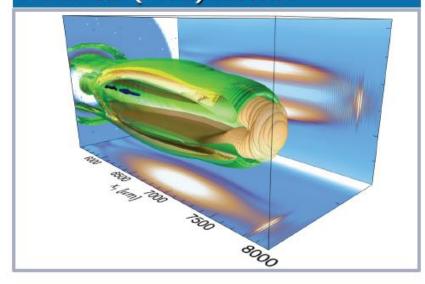


Laser mode controls transverse field, sets bunch emittance matching

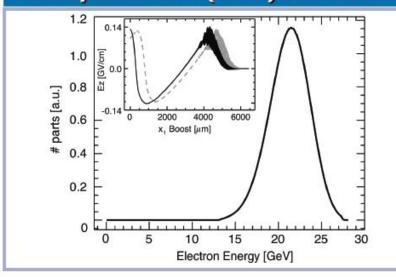
- Emittance matched bunch radius $<<\lambda_p$ for nonlinear & Gaussian-laser linear
 - Laser mode shaping increases matched bunch radius & loading efficiency
 - Fields can be shaped to compensate emittance


 Detailed emittance modeling requires integration of momentum accuracy and potentially additional models such as mesh refinement, radiation, scattering models

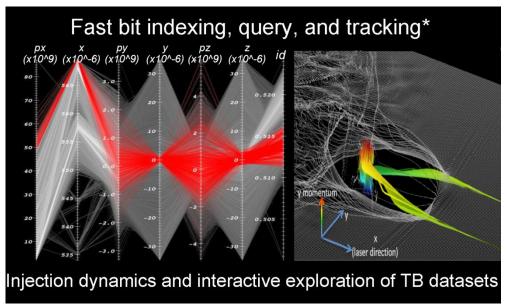
Massively parallel Full PIC results for a 300J laser

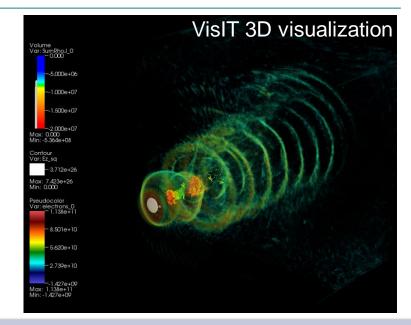


Density [1.53e19 cm⁻³]

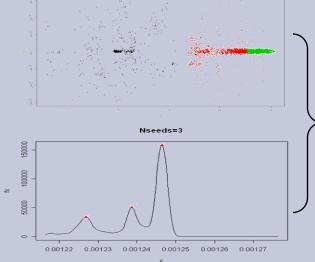

Strongly nonlinear (30fs) :: Laboratory

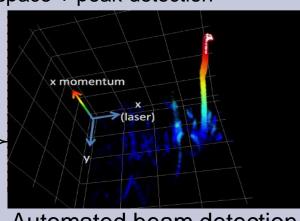
Nonlinear (I I Ofs) :: Boosted


Weakly nonlinear (225fs) :: Boosted



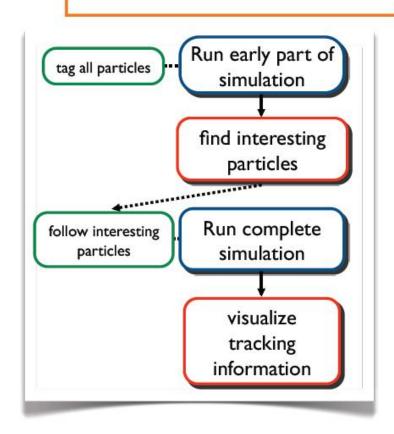
Collaborative development & use of analysis & viz tools; VisIT & FastBit




- * O. Rubel et al., accepted in Supercomputing (2008).
- ** D. Ushizima et al., ICMLA (2008), submitted.
- K.J. Wu et al., to appear in SciDAC Review (2009).
- C.G.R. Geddes et al., to appear in SciDAC Review (2009).

Fuzzy clustering in 6D phase space + peak detection**

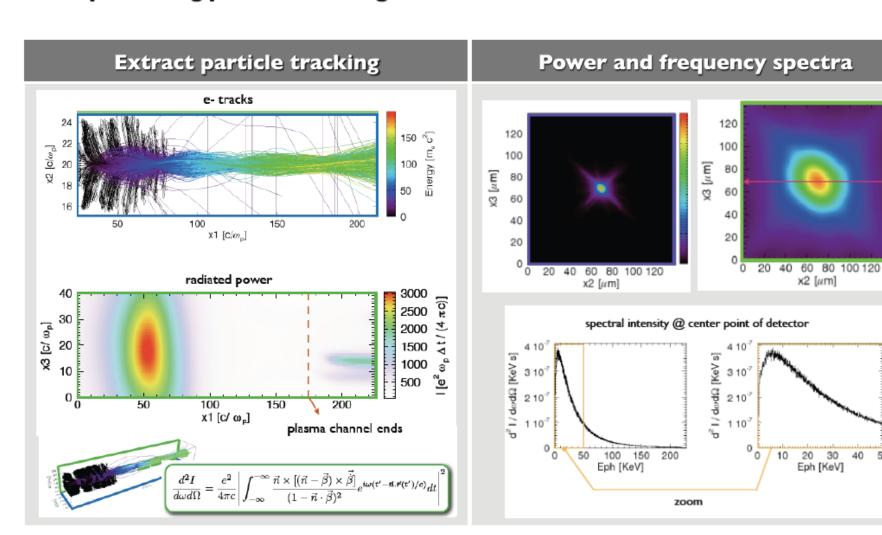
Automated beam detection


Particle tracking in OSIRIS

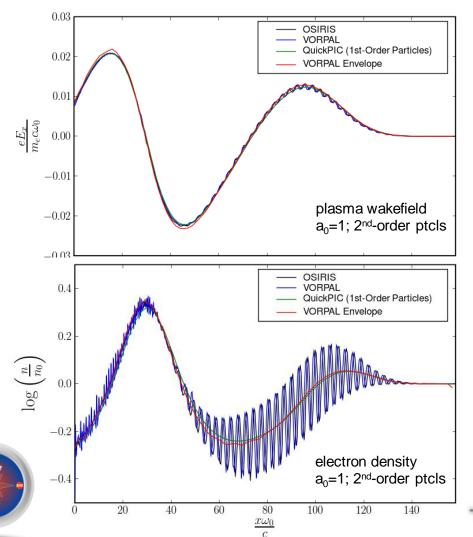
Relevant physics associated with small subset of particles

Record detailed 7D phase-space of "interesting" particles

- Technically challenging
 Subset of ~10³ particles in ~10⁹
- Storing information for every particle not feasible
 - 10⁴ iter. × 10⁹ part. ⇒ ~ 500 TB



Radiation diagnostics using particle tracking


Post-processing particle tracking

Successful benchmarking of 3D LWFA simulations on ~1,000 procs UCLA

Time-explicit PIC (OSIRIS, VORPAL), quasi-static (QuickPIC) and laser envelope (VORPAL) results agree for an intense laser pulse entering a uniform plasma –

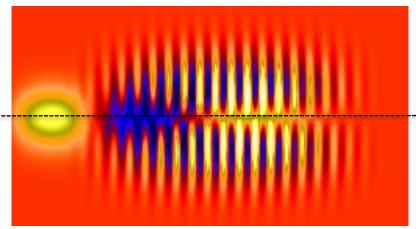
Physical parameters:

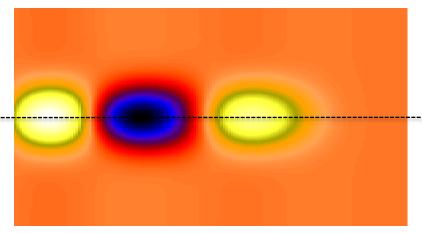
$$\tau_{\text{fwhm}} = 30 \text{ fs}$$
 $W_0 = 8.2 \,\mu\text{m}$
 $P_0 = 2.26 \,\text{TW}$
 $I_{\text{peak}} = 2.14 \,\text{x} \,10^{18} \,\text{W cm}^{-2}$
 $a_0 = 1.0$
 $n_e = 1.38 \,\text{x} \,10^{19} \,\text{cm}^{-3}$

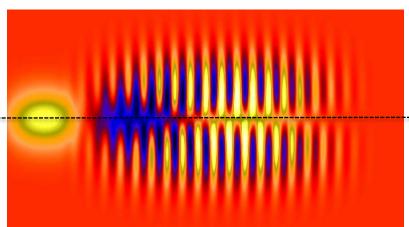
Explicit numerical parameters:

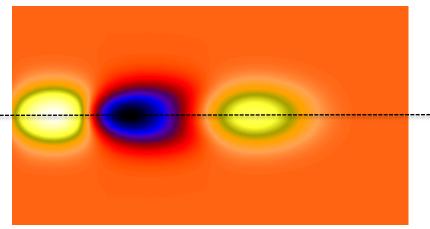
$$N_{cells} = 512 \times 512 \times 512$$

= 1.34 x 10⁸
 $N_{ptcls} = 1.07 \times 10^{9}$
 $\Delta_{trans} = 0.159 \ \mu m$
 $\Delta_{long} = 0.04 \ \mu m = \lambda_0/20$
 $\delta t = 0.0998 \ fs$


Successful benchmarking of 3D LWFA simulations on ~1,000 procs UCLA






OSIRIS – time-explicit PIC

QuickPIC – quasi-static PIC

VORPAL – time-explicit PIC

VORPAL – laser envelope model

New schemes and structures required

New sorted PIC algorithm

Advantages of this new structure

- Single precision can be used for particles
- Reduced memory bandwidth requirements
- · Reduced need for cache
- Elimination of indirect memory addressing (gather/scatter) for fields
- Allows for fine grained partitioning and load balancing

Disadvantages of this new structure

Maintaining particle order adds complexity

Issues with single precision

Tap into the power of state of the art processing units

- Generally limited to single precision arithmetic
- Specific C/C++ code

Verify impact of numerical precision

- Fields, Particles
- Positions defined as cell index + position within cell

Interface with hardware specific code

- Compatible with existing code structure
- Write hardware optimized routines

GPU & SIMD optimizations and benchmarks

GPUs

GPUs are graphical processing units which consist of

- 12-30 multiprocessors, each with a small (16KB), fast (4 clocks) shared memory
- Each multi-processor contains 8 processor cores
- Large (0.5-4.0 GB), slow (400-600 clocks) global memory, readable by all units
- No cache
- Very fast (I clock) hardware thread switching

2D Charge Deposit Benchmark

64x128 grid, 294,912 particles, 36 particles/cell

Results compared to the 3.0 GHz Intel Host

GTX 280 gave a speedup of 25

3D PIC loop

Estimated speedup of ~100

SIMDs & OSIRIS

Single Instruction Multiple Data

- Modern cpus (Intel/AMD/PowerPC) include a SIMD vector unit
- Vector registers (4x 32 bit int/float)*
- Instructions act on vector registers (4 simultaneous operations)
- Require ASM or C intrinsics
- Usable on most C compilers (gcc, icc, etc.)
- Same concepts apply to PowerPC Altivec units

2D PIC Loop Benchmark for OSIRIS

Normalized performance **for quadratic splines** 128x128 grid, ~8M particles, 512 particles/cell

Results compared on a 3.2 GHz Intel i7

- F90 gives a PIC loop of 155 ns/part/step
- SSE gives a PIC loop of 89 ns/part/step

Planned VORPAL enhancements: better messaging for strong scaling; optimize particle push for single processor performance; port fields/particles to GPU

VORPAL enhancements on Petascale systems: strong scaling and single processor performance

Peter Messmer, Ben Cowan, George Bell, Keegan Amyx, Boyana Norris & John R. Cary

Tech-X Corp., Argonne National Lab.

Supported by DOE/ASCR SBIR: DE-FG02-07ER84731 & VORPAL customers

- Work on field messaging enables 10x10x10 domain sizes (see J. Cary presentation)
- Development and implementation of optimized particle push is in progress
 - 0.12 μs/ptcl/step (2.3 GHz opteron) is achieved (C/MPI test kernel; no deposition)
 - > explicit vectorization, optimization of data layout, tuning compiler optimization flags
 - 0.2 μs/ptcl/step (2.3 GHz opteron) is the goal (VORPAL, w/ current deposition, double precision)
 - 0.08 μs/ptcl/step has been achieved in VPIC (LANL, single-precision with altivec instruction set)

NVIDIA GPU acceleration of FDTD simulations with conformal boundaries

Peter Messmer,¹ Travis Austin,¹ John R. Cary,¹ Paul Mullowney,¹ Keegan Amyx¹ & Mike Galloy¹

Tech-X Corp.

*Partially supported by NASA SBIR # NNG06CA13C, NVIDIA Corp. & Tech-X Corp.**

- 3D electromagnetics with conformal boundaries & dielectrics has been implemented
 - available in high-level languages (Matlab, IDL, python), as well as C/C++
 - accomplished via GPULib http://gpulib.txcorp.com/ 20x speedup observed
 - > 3D domain unwrapped into 1D vector; extra layer of guard cells; BC cleanup via "dielectric mask"
- Particle push without current deposition has been prototyped
 - potential race conditions have been identified for current deposition
 - > ideas to solve these problems are waiting to be tested (no funding at present)
- Implementation in VORPAL is resource limited
 - needed for future, heterogeneous architectures

UCLA Future Plans

- Continue experimental support of LBL / BELLA and physics discovery
 - physics of self-trapping and controlled injection
 - 10 GeV stages for e- and e+ acceleration, with emittance control
 - also, more nonlinear regimes, validate against other experiments
 - Provide high-fidelity modeling for planning and optimizing BELLA experiments
- Develop comprehensive LWFA simulation capability and explore collider options
 - model high visibility experiments
 - meter-scale plasmas, e- and e+ acceleration
 - controlled optical injection of e- beams.
 - compare beam loading schemes
 - accurate evolution of low-emittance beams
 - nonlinear vs. weakly nonlinear vs. quasi-linear regimes
 - Staging, guiding, pulse shaping, stability control
- Continue code verification and validation
- Continue enhance suite of approaches
 - Improve speed up of quasi-static, noise reduction, improved dispersion, mesh refinement, radiation models, reduced models, high-order FDTD, cold relativistic fluid...
- Continue VACET collaboration on rapid 3D viz and post-processing
- Continue to improve parallel scaling and code efficiencies
 - Develop PIC algorithms for advanced architectures

